
#1358 Safety, tolerability, and pharmacokinetics of AT-752, a novel nucleotide prodrug with pan-serotype activity against dengue virus: results from a Phase 1, first-in-human, dose-escalation study

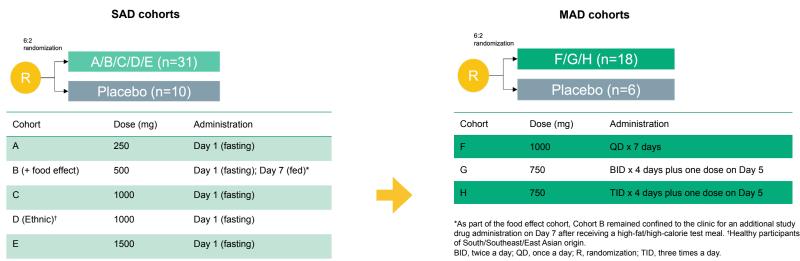
Xiao-Jian Zhou¹, Jason Lickliter², Maureen Montrond¹, Laura Ishak¹, Keith Pietropaolo¹, Dayle James¹, Bruce Belanger¹, Arantxa Horga¹, Janet Hammond^{*} ¹Atea Pharmaceuticals, Boston, MA, United States, ²Nucleus Network, Melbourne, Australia

BACKGROUND

- Despite the drastic resurgence of dengue virus (DENV) in the last two decades, there are currently no direct-acting antivirals or broadly indicated vaccines available¹
- AT-752 is a novel guanosine nucleotide prodrug inhibitor of the polymerase of DENV with sub-micromolar, pan-serotype antiviral activity²
- AT-752 is readily absorbed and metabolized to the active triphosphate (TP) metabolite AT-9010 in mammalian cells²⁻⁴ (Figure 1)

Figure 1. Metabolic pathway of AT-752

- AT-752 is the hemisulfate salt of AT-281, a dual guanosine nucleotide prodrug. AT-281 undergoes multistep metabolic activation to: 1. AT-551, the L-alanyl intermediate
 - 2. AT-8003, monophosphate (MP) of the N⁶-methyl nucleoside metabolite AT-229
 - AT-8001, MP of the nucleoside metabolite with the natural guanine base AT-273
 - 4. AT-9010, the active TP metabolite which potently inhibits the viral RdRp
- AT-8003, AT-8001 or AT-9010 cannot be measured in plasma. Upon dephosphorylation, their nucleoside metabolites AT-229 and AT-273 are formed and enter the general circulation
- Plasma AT-273 is, therefore, considered a surrogate for the intracellular AT-9010


5'-NTase, 5'-nucleotidase; ADALP, adenosine deaminase-like protein; CatA, cathepsin A; CES1, carboxylesterase 1; GUK1, guanylate kinase; HINT1, histidine triad nucleotide binding protein 1; NDPK, nucleoside-diphosphate kinase; RdRp, RNA-dependent RNA polymerase

• Preclinical evaluation showed good safety and potent efficacy against DENV infection in animal models, prompting this first-in-human (FIH), double-blind, randomized, placebo-controlled study of the safety, tolerability, and pharmacokinetics (PK) of ascending single (Part A) and multiple (Part B) oral doses of AT-752^{2,5}

METHODS

• Eligible healthy males and females aged 18–65 years old were sequentially enrolled into Phase 1 single ascending dose (SAD) and multiple ascending dose (MAD) cohorts and randomized to receive oral AT-752 or placebo according to the following design (Figure 2)

Figure 2. SAD and MAD ascending dose cohorts

 Plasma and urine samples were collected at pre-determined timepoints/intervals and were quantitated for AT-281 and its metabolites AT-551, AT-229, and AT-273 using validated liquid chromatography/tandem mass spectrometry (LC/MS-MS) methodologies

- PK analyses were performed using non-compartmental approaches
- Safety assessments included adverse events (AEs), standard clinical laboratory tests, vital sign measurements, electrocardiograms (ECGs), and physical examination

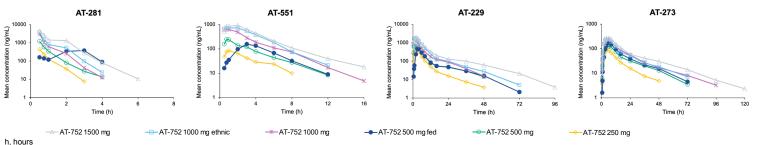
RESULTS

Demographics

- Participants were well matched across cohorts in both SAD and MAD cohorts
- Mean age was 28.6 years and 35.3 years in the SAD and MAD cohorts, respectively
- were male (62.5%) in the MAD cohorts
- Mean weight was 67.3 kg and 74.7 kg in the SAD and MAD cohorts, respectively

Safety/tolerability

- AT-752 was well tolerated; no serious AEs or discontinuations due to AEs occurred (Table 1)
- Non-serious AEs were mild or moderate in severity and resolved by the end of the study
- · No trends in clinical laboratory values, vital signs, or ECG parameters were observed


Table 1. AEs reported by >2 subjects

		MAD cohorts												
	Pooled placebo n=10	250 mg n=6	500 mg n=7	500 mg fed* n=7	1000 mg n=6	1000 mg ethnic n=6	1500 mg n=6	Total n=41	Pooled placebo n=6	1000 mg QD n=6	750 mg BID n=6	750 mg TID n=6	Total n=24	Overall N=65
Headache	1	0	2	4	1	0	2	8	1	0	1	0	2	10
Nausea	0	0	0	1	1	0	1	3	1	0	1	0	2	5
Vomiting	0	0	0	0	1	0	2	3	0	0	1	0	1	4
Food effect cohort.														

PK evaluation in SAD cohorts

- subsequently peaked and exhibited a slower elimination phase (Figure 3; Table 2)
- intracellular exposure of the active TP metabolite AT-9010

Figure 3. Mean plasma concentrations vs time profiles of AT-281 and metabolite

Table 2. Summary of plasma PK parameters of AT-281 and metabolites

						_					
AT-281	C _{max} (ng/mL)	T _{max} (h)	AUC _{inf} (ng/mL*h)	t _{1/2} (h)	CL _R (L/h)	_	AT-551	AT-551 C _{max} (ng/mL)	AT-551 C _{max} T _{max} (ng/mL) (h)	AT-551 C _{max} T _{max} AUC _{inf} (ng/mL) (h) (ng/mL*h)	AT-551 C _{max} T _{max} AUC _{inf} t _{1/2} (ng/mL) (h) (ng/mL*h) (h)
250 mg	482±131	0.5 (0.5–0.8)	347±64	0.5±0.1	7.5±1.5		250 mg	250 mg 89±36	250 mg 89±36 1.0 (0.8–2.0)	250 mg 89±36 1.0 (0.8–2.0) 302±71	250 mg 89±36 1.0 (0.8–2.0) 302±71 2.1±0.3
500 mg	1230±1110	0.5 (0.5–6.0)	1110±687	0.5±0.1	10.9±5.4		500 mg	500 mg 231±155	500 mg 231±155 1.0 (0.8–8.0)	500 mg 231±155 1.0 (0.8–8.0) 898±437	500 mg 231±155 1.0 (0.8–8.0) 898±437 2.4±0.5
500 mg fed Food effect*	488±303 52.2 (22.1–123.6)	2.0 (0.5–3.0)	980±716 80.2 (38.7–166.2)	0.7±0.3	6.6±1.6		500 mg fed Food effect*				
1000 mg	3040±960	0.5 (0.5–0.6)	1910±508	0.5±0.1	11.4±1.7		1000 mg	1000 mg 695±468	1000 mg 695±468 0.8 (0.5–2.0)	1000 mg 695±468 0.8 (0.5–2.0) 2330±1060	1000 mg 695±468 0.8 (0.5–2.0) 2330±1060 2.2±0.4
1000 mg ethnic	3670±1260	0.5 (0.5–0.5)	2730±944	0.5±0.1	9.7±4.2		1000 mg ethnic	1000 mg ethnic 895±418	1000 mg ethnic 895±418 0.9 (0.5–2.0)	1000 mg ethnic 895±418 0.9 (0.5–2.0) 3320±1630	1000 mg ethnic 895±418 0.9 (0.5–2.0) 3320±1630 2.0±0.3
1500 mg	5050±2080	0.5 (0.5–0.8)	4630±1500	0.6±0.2	8.3±2.2		1500 mg	1500 mg 1080±217	1500 mg 1080±217 1.5 (0.8–2.0)	1500 mg 1080±217 1.5 (0.8–2.0) 4100±494	1500 mg 1080±217 1.5 (0.8–2.0) 4100±494 3.2±1.2
AT-229	C _{max} (ng/mL)	T _{max} (h)	AUC _{inf} (ng/mL*h)	t _{1/2} (h)	CL _R (L/h)		AT-273	AT-273 C _{max} (ng/mL)	AT-273 C _{max} T _{max} (ng/mL) (h)	AT-273 C max T max AUC r (ng/mL) (h) (ng/mL*h)	$\begin{array}{cccc} \text{AT-273} & \begin{array}{ccc} C_{\text{max}} & T_{\text{max}} & \text{AUC}_{\text{lef}} & t_{1/2} \\ (\text{ng/mL}) & (\text{h}) & (\text{ng/mL}^{*}\text{h}) & (\text{h}) \end{array}$
AT-229 250 mg	C _{max} (ng/mL) 446±121	T _{max} (h) 2.1 (2.0–3.0)		t _{1/2} (h) 16.9±8.6			AT-273 250 mg	(ng/mL)	(ng/mL) (h)	(ng/mL) (h) (ng/mL*h)	(ng/mL) (h) (ng/mL*h) (h)
	(ng/mL)	(h)	(ng/mL*h)		(L/ĥ)			X1213 (ng/mL) 250 mg 91±19	250 mg 91±19 6.0 (3.0–6.0)	250 mg 91±19 6.0 (3.0-6.0) 1440±280	250 mg 91±19 6.0 (3.0–6.0) 1440±280 19.1±10.2
250 mg	(ng/mL) 446±121	(h) 2.1 (2.0–3.0)	(ng/mL*h) 2890±680	16.9±8.6	(L/ĥ) 13.7±1.6		250 mg	X1210 (ng/mL) 250 mg 91±19 500 mg 135±25 500 mg fed 175±29	250 mg 91±19 6.0 (3.0-6.0) 500 mg 135±25 4.0 (3.0-8.0) 500 mg fed 175±29 6.0 (6.0, 8.1)	250 mg 91±19 6.0 (3.0-6.0) 1440±280 500 mg 135±25 4.0 (3.0-8.0) 2390±478 500 mg fed 175±29 6.0 (6.0, 8.4) 2990±558	250 mg 91±19 6.0 (3.0-6.0) 1440±280 19.1±10.2 500 mg 135±25 4.0 (3.0-8.0) 2390±478 13.9±5.9 500 mg fed 175±29 6.0 (6.0 8.1) 2990±558 17.3±11.0
250 mg 500 mg 500 mg fed	(ng/mL) 446±121 765±307 488±324	(h) 2.1 (2.0–3.0) 1.0 (0.8–4.0)	(ng/mL*h) 2890±680 5480±1630 4310±1400	16.9±8.6 15.1±6.2	(L/ĥ) 13.7±1.6 13.6±5.4		250 mg 500 mg 500 mg fed	N12/3 (ng/mL) 250 mg 91±19 500 mg 135±25 500 mg fed Food effect* 175±29 132.0 (109.8–158.6)	250 mg 91±19 6.0 (3.0-6.0) 500 mg 135±25 4.0 (3.0-8.0) 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1)	250 mg 91±19 6.0 (3.0-6.0) 1440±280 500 mg 135±25 4.0 (3.0-8.0) 2390±478 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1) 2990±558 125.6 (111.2-141.8)	Line (ng/mL) (h) (ng/mL*h) (h) 250 mg 91±19 6.0 (3.0-6.0) 1440±280 19.1±10.2 500 mg 135±25 4.0 (3.0-8.0) 2390±478 13.9±5.9 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1) 2990±558 125.6 (111.2-141.8) 17.3±11.0
250 mg 500 mg 500 mg fed Food effect*	(ng/mL) 446±121 765±307 488±324 64.9 (43.8–96.2)	(h) 2.1 (2.0–3.0) 1.0 (0.8–4.0) 4.0 (3.0–6.1)	(ng/mL*h) 2890±680 5480±1630 4310±1400 78.4 (68.4–89.9)	16.9±8.6 15.1±6.2 11.2±4.9	(L/h) 13.7±1.6 13.6±5.4 12.5±2.8		250 mg 500 mg 500 mg fed Food effect*	N=210 (ng/mL) 250 mg 91±19 500 mg 135±25 500 mg fed 175±29 Food effect* 132.0 (109.8–158.6) 1000 mg 241±71	250 mg 91±19 6.0 (3.0-6.0) 500 mg 135±25 4.0 (3.0-8.0) 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1) 1000 mg 241±71 4.1 (4.0-6.3)	250 mg 91±19 6.0 (3.0-6.0) 1440±280 500 mg 135±25 4.0 (3.0-8.0) 2390±478 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1) 2990±558 125.6 (111.2-141.8) 1000 mg 241±71 4.1 (4.0-6.3) 4350±1520	Store (ng/mL) (h) (ng/mL*h) (h) 250 mg 91±19 6.0 (3.0-6.0) 1440±280 19.1±10.2 500 mg 135±25 4.0 (3.0-8.0) 2390±478 13.9±5.9 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1) 2990±558 125.6 (111.2-141.8) 17.3±11.0 1000 mg 241±71 4.1 (4.0-6.3) 4350±1520 26.2±12.2
250 mg 500 mg 500 mg fed Food effect* 1000 mg	(ng/mL) 446±121 765±307 488±324 64.9 (43.8–96.2) 1640±474	(h) 2.1 (2.0–3.0) 1.0 (0.8–4.0) 4.0 (3.0–6.1) 0.9 (0.8–3.0)	(ng/mL*h) 2890±680 5480±1630 4310±1400 78.4 (68.4–89.9) 10300±3070	16.9±8.6 15.1±6.2 11.2±4.9 12.4±10.7	(L/h) 13.7±1.6 13.6±5.4 12.5±2.8 14.2±3.8		250 mg 500 mg 500 mg fed Food effect* 1000 mg	N=210 (ng/mL) 250 mg 91±19 500 mg 135±25 500 mg fed Food effect* 175±29 132.0 (109.8–158.6) 1000 mg 241±71 1000 mg ethnic 240±46	250 mg 91±19 6.0 (3.0–6.0) 500 mg 135±25 4.0 (3.0–8.0) 500 mg fed Food effect* 175±29 132.0 (109.8–158.6) 6.0 (6.0–8.1) 1000 mg 241±71 4.1 (4.0–6.3) 1000 mg ethnic 240±46 5.0 (3.1–6.0)	250 mg 91±19 6.0 (3.0-6.0) 1440±280 500 mg 135±25 4.0 (3.0-8.0) 2390±478 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1) 2990±558 125.6 (111.2-141.8) 1000 mg 241±71 4.1 (4.0-6.3) 4350±1520 1000 mg ethnic 240±46 5.0 (3.1-6.0) 3830±519	Line (ng/mL) (h) (ng/mL*h) (h) 250 mg 91±19 6.0 (3.0-6.0) 1440±280 19.1±10.2 500 mg 135±25 4.0 (3.0-8.0) 2390±478 13.9±5.9 500 mg fed Food effect* 175±29 132.0 (109.8-158.6) 6.0 (6.0-8.1) 2990±558 125.6 (111.2-141.8) 17.3±11.0 1000 mg 241±71 4.1 (4.0-6.3) 4350±1520 26.2±12.2 1000 mg ethnic 240±46 5.0 (3.1-6.0) 3830±519 16.3±3.0

Food effect is represented as geometric mean ratio (90% CI).

C_{max}, AUC_{inf}, and t_{1/2} are represented as mean±SD. T_{max} is represented as median (minimum–maximum). CL_R is represented as mean±SD. AUC_{inf}, area under the curve extrapolated to infinity; CI, confidence interval; CL_R, renal clearance; C_{max}, maximum plasma concentration; SD, standard deviation; t_{1/2}, half life; T_{max}, time to reach maximum concentration

• The number of male (51.2%) and female (48.8%) participants in the SAD cohorts were similar whereas the majority

• Most participants were White except for the SAD ethnic cohort where all participants were Asian

· Sporadic cases of gastrointestinal-related events, including mild-to-moderate vomiting, occurred mostly at higher doses

• Upon oral dosing under fasting conditions, the parent prodrug AT-281 was rapidly absorbed and cleared, followed by the appearance of AT-551 which also exhibited a transient exposure. The N⁶-methyl nucleoside metabolite AT-229

• Plasma AT-273 appeared more gradually and exhibited a long half-life (cohort mean up to 23 hours), reflecting sustained

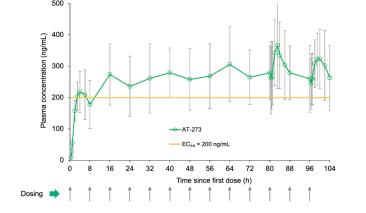
PK ethnic sensitivity

• PK profiles were similar between the South/Southeast/East Asian and mostly Caucasian subject cohorts, suggesting absence of PK ethnic sensitivity; therefore, dose adjustment in these respective populations does not appear necessary

Dose proportionality analysis

 Plasma exposure of AT-281 and its metabolites increased over the studied dose range from 250–1500 mg. AT-229 increased in a dose-proportional manner. AT-281 and AT-551 increased in a greater than dose-proportional manner whereas AT-273 was slightly less than dose-proportional

Food effect


- A high-fat/high-calorie meal delayed and decreased peak level of AT-281, AT-551, and AT-229 but had limited to no impact on their total exposure, and slightly increased the plasma exposure of AT-273 (Table 2)
- These results demonstrated that AT-752 can be taken with or without food

Urine excretion

- Following single oral administration of AT-752 at 250 to 1500 mg, urine elimination was low for AT-281 (<3%) and AT-551 (<1%) and was modest for AT-229 (10.7–17.9%) and AT-273 (6.7–8.8%), with total urine recovery ranging from approximately 20–30% across doses
- Renal clearance of the nucleoside metabolites AT-229 and AT-273 exceeded estimated glomerular filtration rate, suggesting involvement of active secretion in their renal elimination

PK evaluation in MAD cohorts

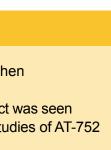
Figure 4. Mean±SD plasma concentrations vs time profiles of AT-273 with AT-752 750 mg TID

- Plasma exposure of AT-273 increased by approximately 25, 60, and 80% with QD, BID, and TID, respectively, due to its long plasma half-life, reflective of rapid accumulation and sustained intracellular exposure of the active metabolite AT-9010
- The 750 mg TID dose led to a rapid increase in plasma AT-273 levels, exceeding the 90% effective concentration (EC_{00}) of the drug in inhibiting DENV replication in vitro (0.64 µM or 200 ng/mL of eq. AT-273) and maintained such levels over the treatment period (**Figure 4**)

Table 3. Summary of steady-state plasma PK parameters of AT-281 and metabolites

			-												
AT-281	C _{max} (ng/mL)	T _{max} (h)	AUC _{tau} (ng/mL*h)	AT-551	C _{max} (ng/mL)	T _{max} (h)	AUC _{tau} (ng/mL*h)	AT-229	C _{max} (ng/mL)	T _{max} (h)	AUC _{tau} (ng/mL*h)	AT-273	C _{max} (ng/mL)	T _{max} (h)	AUC _{tau} (ng/mL*h)
1000 mg QD (Day 7)	3810±1670	0.5 (0.5–0.5)	3090±1530	1000 mg QD (Day 7)	392±143	1.0 (0.8–2.0)	1650±498	1000 mg QD (Day 7)	1200±284	0.9 (0.8–2.0)	8290±2290	1000 mg QD (Day 7)	241±56	4.0 (3.0-4.0)	3120±694
750 mg BID (Day 5)	3490±1280	0.5 (0.5–0.8)	2690±640	750 mg BID (Day 5)	365±159	1.0 (0.8–2.0)	1330±503	750 mg BID (Day 5)	1470±404	1.5 (0.8–2.2)	7960±2970	750 mg BID (Day 5)	288±58	3.5 (3.0-4.0)	2680±730
750 mg TID (Day 5)	3010±754	0.5 (0.5–1.0)	2540±572	750 mg TID (Day 5)	245±30	1.5 (0.8–2.0)	944±173	750 mg TID (Day 5)	1600±640	1.5 (1.0–2.0)	8880±3330	750 mg TID (Day 5)	330±98	3.5 (3.0–6.0)	2370±743

{ax} and AUC{tau} represented as mean±SD. T_{max} is represented as median (minimum–maximum). C_{tau}, area under plasma concentration-time curve over dosing interval.


CONCLUSIONS

- AT-752 was safe and well tolerated when administered as a single oral dose up to 1500 mg, or when administered as multiple oral doses up to 750 mg TID
- AT-752 exhibited no PK ethnic sensitivity in South/Southeast/East Asian participants and no food effect was seen
- The overall safety and PK results obtained in this FIH study supported the initiation of two clinical studies of AT-752 for the treatment and prophylaxis of DENV infection^{6,7}

World Health Organization (WHO). Dengue and severe dengue. June 2020; 2. Good SS et al. Antimicrob Agents Chemother 2021;65(11):e0098821; 3. Good SS et al. PLoS One 2020;15(1):e0227104;
Good SS et al. Antimicrob Agents Chemother 2021;65(4):e02479–20; 5. NCT04722627. ClinicalTrials.gov; 6. NCT05466240. ClinicalTrials.gov; 7. NCT05366439. ClinicalTrials.gov.

This study was funded by Atea Pharmaceuticals. Medical writing and design support were provided by Elements Communications Ltd, Westerham, UK and were funded by Atea Pharmaceuticals.

Xiao-Jian Zhou, Maureen Montrond, Laura Ishak, Keith Pietropaolo, Dayle James, Bruce Belanger, Arantxa Horga, Janet Hammond are employees of and may own stock in Atea Pharmaceuticals, Boston, MA, USA; Jason Lickliter is an employee of Nucleus Network, Melbourne, Australia, which was contracted to help perform this research

