Despite a drastic resurgence of dengue virus in the last two decades, AT-281 undergoes multistep metabolic activation to:2,3

Here, we report results of C-QTc analysis as part of the AT-752 at the studied doses did not have a clinically relevant effect on cardiac repolarization: the QT interval corrected for heart rate (HR) (Figure 4). O

Effect on cardiac repolarization: the QT interval corrected for heart rate (HR)

Cardiac safety assessment

Continuous 12-lead electrocardiograms (ECGs) were recorded pre and post dose, and collected at PK-matched timepoints.

ECG intervals were measured in a blinded manner using the Early Precision QT technique.

– At each nominal timepoint, up to 10 ECG replicates were extracted.
– Categorical T-wave morphology analysis and measurement of PR (time between atrial depolarization and ventricular depolarization) and QRS (ventricular depolarization) intervals were performed using a semi-automated process in three of the 10 ECG replicates at each timepoint.
– The primary ECG objective was to evaluate the effect of single and multiple ascending AT-752 doses on the QT interval corrected for heart rate (HR) using the Fridericia formula (ΔΔQTcF) using C-QTC analysis

RESULTS

Effect on HR

– AT-752 at the studied doses (up to 1500 mg single dose, and 750 mg TID x 4 days) did not have a clinically relevant effect on HR.

Changes from baseline in HR of participants who received AT-752 were generally followed the pattern observed in those who received placebo, with no apparent dose dependency.

Effect on cardiac repolarization: the QT interval corrected for heart rate

– Changes from baseline in ΔΔQTcF (ΔΔQTc) with AT-752 treatment generally followed the placebo pattern across post-dose timepoints in the SAD and MAD cohorts.

– A linear mixed-effects model was selected to fit to ΔΔQTcF vs plasma concentrations of AT-281 (the freebase of the SAD-2, the L-aryl intermediate AT-551, and the two nucleoside metabolites AT-229 and AT-273 (Figure 5). The primary ECG objective was to evaluate the effect of single and multiple ascending AT-752 doses on the QT interval corrected for heart rate (HR) using the Fridericia formula (ΔΔQTcF) using C-QTC analysis

AIC values for all models from C-QTC analysis

Table 1. AIC values for all models from C-QTC analysis (Pooled Part A and Part B)

<table>
<thead>
<tr>
<th>Model</th>
<th>Included in model</th>
<th>ΔAIC</th>
<th>ΔAIC (t-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>AT-281 (total)</td>
<td>144.3 0.00 (0.00, 0.23)</td>
<td>0.00 (0.00)</td>
</tr>
<tr>
<td>B</td>
<td>AT-551</td>
<td>144.9 0.67 (0.00, 1.34)</td>
<td>0.67 (0.11)</td>
</tr>
<tr>
<td>C</td>
<td>AT-229</td>
<td>145.3 1.09 (0.00, 2.18)</td>
<td>1.09 (<0.0001)</td>
</tr>
<tr>
<td>D</td>
<td>AT-273</td>
<td>145.3 1.09 (0.00, 2.18)</td>
<td>1.09 (<0.0001)</td>
</tr>
</tbody>
</table>

CONCLUSIONS

– AT-752 had no clinically relevant effects on cardiac repolarization, heart rate, PR interval, or QRS duration.
– AT-752 effect exceeding 10 ms is unlikely across the full observed plasma concentration ranges of AT-281 and metabolites

References

Acknowledgements

The authors of this report have no conflicts of interest to declare. This work was supported by Atea Pharmaceuticals, Brookline, MA, USA. Funding was provided by Atea Pharmaceuticals, Brookline, MA, USA.

Disclosures

Kai-Jian Zhou, Maureen Montrose, Keith Pietropaolo, Bruce Belanger, and Janet Hirsch are employees of and hold stock in Atea Pharmaceuticals, Brookline, MA, USA. Todd Rudo and Hongqi Yue are employees of Atea Pharmaceuticals, Brookline, MA, USA, who was contracted to perform the analysis.